?

Log in

с 11 июля по 11 января
Прочитать Кунина logic of chance
бытие и время
Доперевести с немецкого Беньямина
Десять уроков немецкого 2+2
Перевести три страницы с латыни
Три страницы с греческого
посмотреть сериал на испанском
дочитать книжку assimil испанскую
Бахтин К философии поступка http://postnauka.ru/faq/12092
odi et amo Katull читать
Перечитать историю Ницше
читать Кысь
читать стоиков к самому себе Аврелий

Посмотреть десять лекций с лекториума 2

Доредактировать с Мишей статью про пески и послать
прочитать мини-курс про пески 4 лекции
прочитать мини-курс про тропические кривые 4 лекции
компьютерные эксперименты с мексиканцами, написать две экспериментальные статьи
Заботать связанную с этим кэлерову геометрию и некоммутативные торические многообразия и написать текст с гипотезами по этому поводу

Написать статью про уточнённые тропические формы

доредактировать и послать и про тропические модификации
доредактировать и послать про лежандровы кривые, в какой-нибудь вычислительный журнал

разобраться в построении песочной группы на какие матроиды обобщается

что-нибудь разумное сделать в проекте про тела Окунькова-Ньютона

прочитать

статью мро пески Левина про аполлоновы формы
статью про теорию Хожда на тропических многооразиях
Статью Эрнесто и Кацаркова
статью Дональдса про кэлерово что-то
last article of Sportiello and company is worth to read. ничего не понял, потом пересмотреть как-нибудь

May. 6th, 2020

Страничка, в известной мере отражающая мои занятия : http://mathcenter.spb.ru/nikaan

любимая поэзия http://nikaan.livejournal.com/129231.html

Периодически я удаляю какие-то посты, все комментарии хранятся у меня в почте.

Лист желаемого - http://nikaan.livejournal.com/225237.html
Мне всегда интересно было, почему работают генетические алгоритмы. Когда работал программистом, однажды решал многомерную задачу о рюкзаке — у нас есть порядка ста предметов, у них есть несколько характеристик, и их надо разбить на группы, так что каждая группа удовлетворяет неравенствам. Для каждой характеристики, её сумма (или другая функция, близкая к линейной) по элементам группы лежит в заданных пределах.

Ну и какая-то там целевая функция была (нужно как можно больше объектов использовать), близкая к линейной. Удивительным образом, получалось что генетические алгоритмы (мы интерпретируем раскладку элементов по группам как последовательность генов организма, дальше можно скрещивать разные организмы.) работают лучше всего. Ну и это такой известный факт.

Сейчас я несколько раз наткнулся в обсуждениях на topological data analysis, и про это вспомнил.

Появилась идея такого вычислительного проекта — надо взять “типичную” задачу о таком мультирюкзаке и попробовать топологически понять что происходит. Топологически это выглядит следующим образом —- мы рассматриваем все возможные разбиения множества объектов на группы. Это такое топологическое пространство, где расстояние мерится по метрике Хэмминга или что-то вроде того. Потом мы выбрасываем из этого пространства все точки где целевая функция “не близка” к максимуму.

Полученное пространство X уже имеет дырки и топологически нетривиально. Теперь на этом пространстве действуют два оператора — условно фенотипический и генетический. Фенотипический оператор получает на вход любую точку исходного пространства и локальными улучшениями (поменять местами объекты в группах, попробовать заменить объект из группы на один или два неиспользованных и тд) приводит её к точке пространства X, локальному максимуму.

Генетический оператор действует так, Он берёт две точки из X и производит скрещивание (например, берёт первую половину разбиения из первой точки, вторую половину из второй точки, потом удаляет все дважды встретившиеся объекты). Таким образом, на пространстве X есть умножение — берём две точки, применяем генетический оператор, в потом фенотипический к результату.

Если мы верим в то, что генетические алгоритмы всегда работают, то, начав со случайных точек в X, многократное применение такого умножения должно быть типа эргодичным, и мы сколь угодно близко подберёмся к глобальному максимуму.  Получается две задачи — топологическая (при каких условиях на операторы получится эргодичная динамика), и вычислительная — надо запускать много экспериментов и вообще смотреть что получается. Опять же, там есть building block hypothesis, что все хорошие решения собраны из небольшого числа средней длины генов, это тоже можно попробовать интерпретировать топологически.

Не знаете ли Вы кого-нибудь, кому это может быть интересно, потому что один я этим заниматься (и программировать всё это) вряд ли буду?
Качества других людей часто вызываются удивление и восхищение. И я всегда стараюсь эти качества, которые временами ситуационны, как-то понять, и им обучиться. Навроде способности в незнакомом месте найти людей, которых расспросить куда и как пойти, которые дадут совет, помогут, или расскажут местные байки. Или чужие привычки, порой сразу незаметные, которые можно попробовать выработать самому. А каким качествам вы научились от других, причём целенаправленно?
Там был предустановлен линукс, был план его быстро снести и поставить седьмую винду (мы идеологически против 8ки и 10ки, потому что они хотят вообще всё знать про тебя, и во всё указывать, 7ка вроде не такая).

Ноут доставили, но он не очень включился — был чёрный экран, после перезагрузки предложил выбрать какие-то 4 версии 14 убунты… Не очень понятно что делать, отдал деньги доставщику (который даже слова линкс не знал). Наверное, можно не отдавать, но неудобно. Больше не буду технику с доставкой заказывать.

В итоге следующие семь дней по 8-10 часов в день я боролся.
14.04 убунта загружалась примерно каждый второй раз (либо чёрный или фиолетовый экран), но через случайное время от минуты до получаса замораживала экран и ничего не происходило.

Это мешало. Далее оказалось, что одни и те же действия в висте, на маке и в линуксе приводят к разным результатам. Дисковода в ноуте нет, есть три порта usb 3.0. В итоге, разобравшись с UEFI mode/legacy mode и подбором эвристик (загрузиться в биос и просто сразу выйти из него - тогда с флэшки загрузится) я научился.
Поставил винду.

Но на ней не работал интернет. А 7ая винда не распознаёт usb 3.0, поэтому не было способа закинуть на ноут драйверы. В итоге снова борьба с поиском линукса, который может загрузиться с флэшки. Но почти все линуксы повторяли судьбу убунты — у них экран замирал через несколько минут. Но я, повторением и повторением, таки скинут драйверы на диск с виндой. Стал их ставить и всё сломалось — как выяснилось ещё через пару дней опытным методом, не надо ставить пакет с драйверами с сайта dell, там некоторые из них устарелые.

Дальше винда не ставилась, хотя я повторял те же действия, и много чтения форумов. Важный совет, где-то на одном из них — don’t give up. Повтори десять раз, может получится. Так и есть. Надо включить AHCI-mode вместо raid, надо ставить в safe-mode потом заходить в список устройств, выключить видеокарту и sam контроллер, перезагрузиться, снова войти, прежде чем всё закониться запустить explorer.exe перезагрузиться, потом залогиниться, создать точку восстановления, поставить драйверы, оно всё ломает, откатиться, ставить их по одному….

В общем, хороший новый ноут, несовместимый со старьём типа убунты (и последней тоже) и винды7. Ещё я узнал, что биос обновлять можно. И что читать лучше не интернет, а базу данных dell. И что для разных моделей разные проблемы. И что драйвера бывают разной степени совместимости и устарелости.

Я зауважал винду — она умудряется работать на сотне моделей ноутбуков, биосов, видеокарт и тд. Маку в этом смысле намного проще.

Приз зрительских симпатий Puppy linux. Он отлично работал, и не имел проблем с замораживаем экрана. И совет про не сдаваться. 50 часов мучений, 200 перезагрузок. Наверное, можно было быстрее, если с самого начала не думать, что сейчас всё получится, и можно ни в чём не разбираться.
Христос Воскресе!

В Питер меня не взяли, зато дали швейцарский грант. Таки придётся на год в Мехико ехать, учить испанский. По слухам в СПбГУ хотят от профессоров умения получать внешние гранты. Вот, теперь можно будет про этот грант писать в следующий раз. Ещё, вероятно, им хочется, чтобы было много публикаций -- это тоже не проблема, можно главы диссертации опубликовать. Вообще, суда по всему, количество публикаций не проблема (если не гнаться за сотнями) -- вопрос только в их качестве и в том, где брать интересные задачи, чтобы их получалось решать.

По хорошему, всё мной решённое всё же откуда-то извне притекало -- может оно и ладно, но хочется честно придумать задачу с нуля -- таков план мой на ближайший год. Я пробовал придумать разумный вопрос про K3 поверхности, но они весьма изучены. С другой стороны, опыт говорит, что надо браться за задачки, пробовать и брать новые. Если для чужих задачек вероятность успеха процентов десять, то тут, может, один. Так что выглядит разумным раз в пару недель задаваться каким-нибудь новым вопросом, и пробовать его решить. С другой стороны, надо старые проекты доделывать, и куча повседневных дел. В итоге постепенно прихожу к нетривиальной мысли (в 28 лет), что математика -- это всё же работа, и нужно тратить много времени, как можно больше, желательно, всё, и, желательно, разумно, иначе ничего не получается. Лучше поздно, чем никогда.

Из Женевы даже как-то жалко уезжать -- только научная жизнь меня тут начала устраивать, семинары, образование, как и. С другой стороны, именно то, что придётся скоро уезжать сподвигло на новые начинания. Так что знание о том, что куски жизни заканчиваются, помогает подбивать бабки. Бытие, оно же бытие к смерти, а не просто так.

Apr. 17th, 2016

1.О классическом образовании
http://tsargrad.tv/article/2016/04/12/mif-o-sovtskoj-shkol
Взято из http://trombicula.livejournal.com/274580.html?style=mine#comments

Я не могу сказать что именно, но что-то во мне изменилось в связи с изучением древнегреческого и латыни. И то, даже не изучением, а предварительным знакомством — я, пожалуй, увидев теперь фразу на греческом или латыни, смогу их перевести со словарём, и иногда даже понять.

Очевидная польза от этого упражнения состоит хотя бы в том, что делать его очень тяжело. Тексты переводить сложно. Древние тексты переводить почти невозможно — там все слова значат что-то другое. Имеют огромное количество непонятных коннотаций. Первый раз такое ощущение у меня было на археологической экспедиции в Крыму — за простыми вещами стоят очень сложные понятия, и сложные взаимосвязи. Можно целый час говорить об одном слове.

2.Образование в Швейцарии. Я, когда езжу тут по разным университетам, беру их журнальчики. Очень интересно читать. Поделюсь.

Вступительных экзаменов в университет тут нет - записываешься и ходишь. Так сложилось. Это приводит к тому, что после первой сессии отчисляют 40% студентов. Чтобы отчислили, надо два раза не сдать экзамен, и завалить пересдачу. Если отчислили из одного места, можно пойти в другое. Если отчислят и там, то всё — больше никуда. В Лозанне вроде можно через восемь лет после этого ещё раз поступать в универ, но это особенность кантона.

Образование при этом условно бесплатное (семестр 500 франков ~ аренда комнаты на месяц). Для всех — как швейцарцев, так и приезжих. Во всяческих платных местах, наверное, можно учиться всегда — выше это только про университеты (обычно в одном кантоне один университет, и типа один ВУЗ для инженеров.).

Чтобы студенты лучше учились, отдельное подразделение помогает им. Читают миникурсы на тему как вести конспект, планировать время, улучшать помять и организацию, и тд и тп. Во многом ради этого же есть спорт — который практически бесплатен. Потому что для учёбы полезно заниматься чем-то, кроме учёбы — например, спортом. То есть целая экосистема направлена на то, чтобы студент в ней варился, и вышел образованным и живым.

Я не знаю где в России так бы серьёзно относились к студентам. Какие-то похожие вещи есть в Вышке, но во всём остальном, как я понимаю, дискурс идёт о том какие плохие преподаватели, или студенты, почему они глупые или плохо-образованные, как их научить. То же с аспирантами.

Представление аспирантов о том как заниматься наукой заключаются, более-менее, в том, что наукой заниматься надо хорошо и точка. Но, например, хотя бы должны быть семинары для аспирантов, где их учат писать научные тексты и вообще учат как писать. Иногда, конечно, этим занимается научрук, а иногда нет. То же самое с докладами. Делать хорошие доклады (и преподавать) сложно, но этому можно учиться не только на своём опыте и наблюдая за окружающими.

Конечно, это всё должно быть не вместо хорошей науке, но как дополнение к ней. Вместо этого аспирантов учат английскому и философии. В случае аспирантуры РАН в Питере оба курсы были более чем бессмысленны. С таким же успехом можно преподавать древнекитайский и вязание крестиком — вроде не вредно, время занимает, социализирует немного.

Конечно, всё что я перечислил, просто преподавать некому. Да во многих местах и незачем. Поэтому один из пунктов в моём списке что делать по возвращении в Россию — это внедрять что-то вроде вышеописанного. Конечно, не институционально, а крайне локально, вокруг себя, и смотреть как пойдёт. Социология образования в России (как и социология всего) должна быть очень интересной наукой. Всё так хрупко, и так много наслоение старых методов, недовведённых новых и так далее. И это всё как-то работает, чудом! Невообразимо сложно добиваться улучшения хоть одного параметра в огромных структурах.

3.Разные знакомые расстраивались по поводу того, что ФСБ будет запрещать выезд за границу. И поэтому надо срочно валить. Чувство раздражения из-за этого напомнило мне раздражение реакцией на акцию “Бог ли Путин?”.

Уж будто ФСБ есть дело до нас, хипстеров, и только и думает как нас объявить террористами и запретить ездить в Париж. В России несколько тысяч человек воюет на стороне ИГИЛ. Это же очень просто сделать — летишь в Стамбул. Потом возвращаешься с боевым опытом. Но никто ничего не докажет. Если этим людям запретить ездить заграницу, то будет хотя бы не так просто, нужно будет как минимум больше времени и денег на дорогу тратить. Но нет, хипстеры в возмущении, любому из них могут хоть завтра обвинение в экстремизме пришить.

Пусть даже это первый шаг к закрытию границ (это было однажды в Советском Союзе, но люди там были идейные, после гражданской войны и тд, и вообще почему мы должны современную Россию сравнивать с Советским Союзом начала века, а не с Нигерией или Эквадором нынешними?). Пусть закроют границы. Где я хочу оказаться? Очевидно, в России — где у меня есть родственники, о которых надо заботиться. Наверное, когда наступает момент где вопрос уже идёт не о заботе, а о личном выживании, то всё по-другому — и тогда пишешь доносы на родителей, убиваешь братьев и тд и тп. Но до такого вроде не скоро дойдёт. Поэтому, казалось бы, если есть предчувствие закрытия границ, и в России есть какие-то дорогие люди, то надо срочно ехать туда.


4.Из Турции эвакуируют семьи американских дипломатов (не отовсюду. но в тч. из региона, где проходит геометрическая конференция, куда наша тропическая группа ездит). Поедем и в этом году. Россия и многие европейские страны этого делать не рекомендует, но такой рекомендации швейцарцам пока не было. Доверяем швейцарцам, конечно. Авось, если похитят, то универ выкупит.

5.Читаем на семинаре книжку про отображение моментов. Практически первый раз ощущение семинара, где происходит обучение. Семинар должен быть маленьким (4-5 человек). Все должны быть заинтересованы. Более образованные должны быть заинтересованы в обучении менее образованных. Это должны быть не доклады, а совместное чтение текста. Вообще этот год богат на новые вещи, которые я выучил. На новые практики которые можно пробовать с разными результатами. Но очень часто есть ощущение, что что-то новое и значимое (про жизнь) я понимаю. Очень похоже на возраст 15-17 лет, только намного круче. Можно сказать, ещё раз открылись глаза на сути вещей. Так что нет меры моей благодарности Швейцарии за проведённые здесь пять лет. Ни одно другое место, где я был, не нравилось мне как её французская часть. Всем рекомендую. При этом жить здесь до старости совершенно не хочется, это такой, пройденный этап -- как и школа может быть прекрасным местом, но хочется же выйти за её пределы, в другую взрослую жизнь.

Apr. 2nd, 2016

А про мексиканскую студентку — вероятно, это верно для всех студентов, по крайней мере я делал так же в бытность свою. Говоришь ей, прочитай простую статью и проверь простой факт. Потом проходит пара месяцев, спрашиваешь как дела. Отвечает, что читает какую-то страшную хрень и думает над самой сложной проблемой в области, и что-то блин ничего не понятно и ничего не получается, от слова вообще.

Снова посылаешь ей простые статьи и говоришь читать их, а не неведомую хрень, которую я, скорее всего, тоже не пойму. Пишешь инструкцию как именно посчитать тот самый простой пример (посчитать его быстрее, чем писать пошаговую инструкцию).

Я боюсь, через пару месяцев обнаружится что она компьютер включать сама не умеет, не знает что такое язык программирования, испытывает сложности с раскрытием скобок, и не знает что такое граф. А до этого ходила, кивала, и стеснялась спросить.

Ну я как-то так же делал весь универ и пару лет после, так что норм.
Смотрю на список http://spbu.ru/about-us/vacancies/9-vacancies/25554-matematika-i-mekhanika-04-03-2016.html#h и он весьма забавно выглядит. Во-первых, по-моему там только я с зарубежной степенью. Во-вторых, довольно много (молодых) людей, которые сейчас заграницей, но, судя по всему, с удовольствием бы вернулись. В третьих, много людей, которым под 60-70(!). В четвёртых, есть люди не из Питера.

Будет интересно смотреть на результат, может быть будут понятны критерии. То есть, например, если у них есть критерий "мы хотим людей с зарубежными степенями", как это было у Вышки, мне будет приятно. Но я бы, конечно, предполагал, что у них для профессоров есть критерий "человек хороший преподаватель", ну и неплохой учёный. И тогда надо срочно брать Г. Панину. Можно вообразить себе критерий для доцентов "молодой многообещающий учёный", таких там тоже много. Я бы удивился, если бы брали по количеству публикаций или по стажу (тогда бы исходную планку необходимого количества публикаций сделали не 3 (5 для профессоров)).

Ещё я бы предположил, что будут брать так, чтобы закрыть все виды науки. Тогда у заявителей виден явный перекос в сторону матана(диффуров, матфизики и тд). Нет топологов (но, видимо, их сейчас нигде уже нет). Алгебраистов и геометров тоже очень мало. В этом смысле я тоже какой-то редкий человек: из моих трёх работ одна по узлам, другая по алгебраической геометрии (такой, комбинаторной), третья чисто по комбинаторике, а сейчас я пытаюсь заниматься пространствами модулей, кэлеровой и симплектической геометрией, и некоммутативной геометрией.

Пока ничего не получается. Да и вообще странно - построили на многоугольниках (и на выпуклых областях) некие естественные кусочно-линейные фуккции, давайте их интерпретировать. Как интерпретировать? ну, через отображение моментов -- откуда симплектическая и кэлерова геометрия, или через некоммутативные торические многообразия. Никакой другой (или естественной) мотивации для этого нет, просто хочется и всё.

Результаты у этого конкурса то ли в апреле, то ли в мае, в разных местах разное написано. Потом буду восстанавливать критерии. Ещё, если бы из Чебышевской лаборатории взяли туда народ, тогда бы в оной освободились места, что мне тоже было бы приятно(может хоть туда бы меня взяли), потому что на эту позицию меня могут взять либо из-за зарубежной степени, либо из-за специфического профиля (у кого ещё есть студент-мастер в Мексике? кто интересуется всем, кроме матана?). Потому что ни какой другом содержательном смысле я не могу конкурировать с людьми, которые меня старше лет на пять - у них и статей больше, и опыта, и вообще всего. Ну, может не все они на французском языке говорят или, там, Хайдеггером не интересуются. Хотя откуда я знаю.

Ещё интересно читать в заявах про гранты: кажется, те, у кого они есть, живут весьма и весьма неплохо. Осталось узнать, как их заполучить.

Пока я бы поставил на:

На математике:
Профессора
Панина
Дубцов
Пилюгин

Доценты
Крыжевич
Белов
Петров

На информатике:
Профессор
Охотин
Доцент
Головач

При этом, правда, не соблюдается покрытие всех предметов, с другой стороны все указанные люди способны преподавать любые студенческие курсы. Ещё, как вариант, можно взять в два раза больше народа на полставки.. Ставки, господа, ставки, Карл.

Mar. 30th, 2016

А статья на испанском, оказывается, давно уже переведена и выложена:

http://universo.math.org.mx/2015-3/Pilas/arena.html

Мексиканские товарищи ничего мне не сказали, а я уже после этого по времени написал улучшенную версию, в которую добавил ещё всякого, и послал им, и они снова ничего не сказали =)

Зато теперь есть статья на испанском. Можно ещё на русский перевести и в матпрос отправить...



чтение книг. Бумажные книги и чтение в библиотеке лучше чем электронные в интернете. Ничего не отвлекает, бумажную можно листать.

Не знаю, как другие читают книги, но у меня в студенческие и аспирантские годы было какое-то неправильно представление о обучении. Типа, нужно взять книгу и читать её сначала. Разумеется, скучно, ничего не понятно, и никогда ничего не выходит. Так же со статьями.

Потом я от научного руководителя научился вавилонскому подходу. Это как у Фейнмана:
“В вавилонских школах математики ученик решал огромное множество примеров, пока не улавливал общего правила. Он подробно знал геометрию, множество свойств круга, теорему Пифагора, формулы для площадей квадратов и треугольников; кроме того, существовали некоторые способы выводить одно из другого. Имелись числовые таблицы, при помощи которых можно было решать сложные уравнения. Все было подготовлено для того, чтобы производить вычисления. Но Евклид обнаружил, что все теоремы геометрии можно вывести из нескольких простых аксиом.
Вавилонский подход - я назвал бы его вавилонской математикой - заключается в том, что вы знаете самые разные теоремы, многие связи между ними, но не осознаете до конца, что все они могут быть выведены из набора аксиом. Самая же современная математика делает упор на аксиому и доказательства, исходя из очень четких соглашений о том, что можно и что нельзя считать аксиомами. Современная геометрия берет аксиомы, подобные евклидовым, но несколько усовершенствованные, и выводит из них все остальное. Например, такие теоремы, как теорема Пифагора (сумма квадратов катетов прямоугольного треугольника равна квадрату гипотенузы), не будут аксиомами. Но возможно и другое построение геометрии - так, например, в геометрии Декарта теорема Пифагора является аксиомой.
Итак, прежде всего мы должны согласиться с тем, что даже в математике можно отправляться от разных исходных положений. Поскольку все теоремы связаны друг с другом логикой, нельзя сказать, что такие-то утверждения мы считаем основными аксиомами, ибо если вместо них вам предложат другие аксиомы, то и по ним вы сможете построить всю геометрию. Это подобно мосту, составленному из одинаковых секций. Если он развалится, вы можете восстановить его, соединив секции в другом порядке. Сегодняшняя математическая традиция состоит в том, что берут определенные идеи, которые условились считать аксиомами, и исходя из них строят все здание. Если же следовать вавилонской традиции, то мы скажем: "Я знаю то, я знаю это и как будто бы знаю вот это; отсюда я вывожу все остальное. Может быть, завтра я что-то забуду, но что-то я буду помнить и по этим остаткам смогут восстановить все заново. Я не очень хорошо знаю, с чего я должен начать и чем кончить. Но в голове у меня всегда достаточно сведений, так что если я забуду часть из них, то все равно смогу это восстановить".”

Жить стало проще.
Вот я, например, принуждён сейчас читать этот трактат Арбарелло и товарищей про модули кривых (это второй том, 1000стр). Причём не вполне ясно, что мне из него нужно. Во всяком случае, я уже давно смирился, что не великий математик, и не стремлюсь понимать всё или хотя бы что-то. Я так листаю его туда-сюда. Предисловия к разделам (с кратким перечнем идей и результатов) написаны очень хорошо, их можно читать. Потом какие-то упражнения, формулировки теорем. Иногда просто глаз выхватывает что-то знакомое — закон взаимности Вейля и спаривание Делиня, можно подумать как это сделать тропически.

Главное делать это без напряжения, потихоньку связывать это в голове и привыкать. Ну потому что как я не знал что такое какой-нибудь правый производный функтор для прямого образа когерентного пучка, так и не знаю. С другой стороны некое представление об этом есть. Это всё мне напоминает чтение текстов по философии — непонятно, непонятно, а потом - раз - и прогалинка смысла, которая что-то с чем-то увязывает, и объясняет то, что было сотню страниц назад, так что при повторном перечитывании будет уже более понятно.

Я не знаю откуда у меня в университете брались представления о том как надо заниматься наукой, знаю только о том, что все они оказались неправильными. Лучшие советы, которые мне давали, это конечно - делать то, что интересно и так, как получается.

Последние пару лет я вообще за людьми много наблюдаю, как они что делают, как думают, какие привычки, и потом пробую наблюдённое на себе. И в процессе применяю всякие штуки из феноменологии и гештальта -- что на самом деле означает, что я просто наблюдаю за собой, мыслями, реакциями тела, настроения и тд. Что-то подходит, что-то нет. Но огромный прогресс за эти два-три года.